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varies between — T/2 and r/2. Taking these values as 
limits of integration on <£, we obtain for the scattering 
probability into the zone d(A6z) 

^(A62)d(^z) = (T/2)e^E-2d(Adz)(A6z)-
s. (D15) 

This is the pure coulomb result. 
The scattering probability in the magnetic case 

tacitly assumed one particle/cm2-sec in the direction of 

I. INTRODUCTION 

RECENTLY, nuclear magnetic resonance experi­
ments have been used to measure the spin-

diffusion coefficient D in gaseous hydrogen1,2 between 
20 and 55 °K, and3 in gaseous He3 between 1.7 and 
4.2°K. In these experiments, it is usually assumed that 
D is identical with the self-diffusion coefficient4 Do of 
the gas and that the nuclear spin is merely a label which 
allows the diffusion to be observed. However, it turns 
out that the values5,6 of D0 given by the Chapman-
Enskog theory of transport processes are systematically 
smaller than the experimental values of D, and that 
they lie outside the limits of experimental error. 

The object of this paper is to show that, in fact, 
Do is not the quantity measured in these experiments 
and that an appropriate expression for D reproduces 
the experimental results quite well. The distinction 
between Do and D arises only in those situations in 
which it is necessary to treat the scattering of particles 
quantum mechanically. For a two-component gas at 
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the magnetic field incident on the scatterer. The scatter­
ing probability in the coulomb case assumed one 
particle/cm2-sec in the direction of the velocity incident 
on the scatterer. Since the assumption in the coulomb 
description is the equivalent of Ez

ll2/E112 particles/cm2-
sec in the direction of the magnetic field, the value for 
this situation should be a factor of Ez

1/2/Elf2 lower than 
the magnetic value. 

the temperatures under consideration, the coefficient 
of diffusion of component 1 relative to component 2 is 
given by4 

3 kT 

where T is the temperature, k is Boltzmann's constant, 
n the total number density, and m the mass of the 
particles (assumed to be the same for each component). 
Quantum mechanical effects enter through Qi2(u) 

which is a special case of 

a12<»,» = (___) / dye-yV^Qu^iy), (2) 
\irm/ Jo 

where y2 is the relative kinetic energy of the pair of 
particles divided by kT, and 

7r/ m\112 rT 

<2i2(n) = -( — ) / dxsinx(l—cosnx)ai2(y,x). (3) 
y\kT/ Jo 

0:12(7,̂ ) is proportional to the differential cross section 
for scattering of a particle from component 1 by a 
particle from component 2 at a relative kinetic energy 
y2kT. x is the scattering angle. 

The self-diffusion coefficient D0 is defined as the 
limit of Z>i2 when components 1 and 2 become identical, 
and 0:12(7,̂ ) is taken to be proportional to the properly 
symmetrized differential cross section for the scattering 
of identical particles. Thus, for example, in pure 
orthohydrogen, the particles have nuclear spin 1=1 
and rotational angular momentum 7 = 1 , and Do has 
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It is shown that the first approximation to the spin-diffusion coefficient D of a gas at low temperatures 
involves a scattering cross section for distinguishable particles only, so that D is different from the self-
diffusion coefficient Do. Quantum symmetry effects show up in the second approximation to D but the cor­
rection to the first approximation is small. The theoretical values of D for gaseous hydrogen and gaseous 
He3 agree quite well with experimental results. 
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TABLE I. The spin diffusion coefficient in gaseous He3. 

ZW10""8 g cnr 1 sec"1) 
T (°K) Theory Experiment 

_ _ 10 
3 13 13.8 
4 16 17 

been obtained by using5 

Oi2a'1)= (5/9)G.«>+ (4/9)Oa«.« , (4) 

where S2S
(1,1) and fta

(1,1) come from scattering in even 
and odd states, respectively. If this form of 12i2

(1,1) is 
substituted into Eq. (1), it fails to reproduce the 
measured values of D in hydrogen.1,2 

Hartland and Lipsicas1 pointed out that it is possible 
to fit their experiments on hydrogen by calculating 
cross sections as if particles with different values of mi 
or mj were distinguishable so that 

012a,i> = (l/9)0.ci.i)+(8/9)Qn.a.i), (5) 

where Ows
(u) refers to distinguishable particle scattering 

and is obtained from 

47T^2 1 

QnSu(y)= E (H-ijsinW-n), (6) 
mkTy2 z—0.1.2 

where rji are the phase shifts for scattering at relative 
kinetic energy y2kT. 

However, this expression is still not quite correct. 
It is always possible to argue that the differential cross 
sections may be calculated as if particles with different 
values of mi or mj were distinguishable. If then the 
transport process treats all particles in the same way, 
whatever their spin, the end result will be the same as 
if the indistinguishable particle cross section was used. 
Thus, for example, the viscosity and thermal conduc­
tivity coefficients4 involve Q(2)(y) and since (1 — cos2#) 
is an even function of cosx, the interference terms 
between odd and even angular momentum states which 
are odd functions of cosx vanish on integration over x, 
and the expressions corresponding to Eqs. (4) and (5) 
give the same result. 

In a diffusion process, this statement is no longer 
true since (1 — cos#) is neither an odd function nor an 
even function of cos#, and it is necessary to go back 
to a much earlier stage in the calculation. Now, colli­
sions between particles of the same component do not 
inhibit diffusion directly since as a result of momentum 
conservation they do not change the flux of one compo­
nent relative to the other. They may modify diffusion 
indirectly (see Sec. II) but usually this effect is small 
and it has been neglected in the derivation of Eq. (1). 
In the same approximation, spin-diffusion is not 
affected by collision between particles in the same spin 

state and so nonsymmetrized cross sections 

Ol2Cl'1)=On.a-1), (7) 

may be used to calculate D from Eq. (1). 
Physically there must be something (in this case the 

spin wave functions) to distinguish a set of particles 
from the (otherwise) identical particles through which 
they are diffusing. If not, the diffusion could not be 
observed. Thus, Do as given by Eqs. (1) and (4) can 
never be measured, and quantum symmetry effects 
would show up in a diffusion process only if corrections 
to Eq. (1) were important. 

Equations (1), (7), (2), and (6) also give the spin-
diffusion coefficient in a mixture of orthohydrogen and 
parahydrogen, provided n is the total number density. 
Thus, D is independent of the relative ortho-para 
concentrations. This result is consistent with the 
measurements of Hartland and Lipsicas,1,2 and so also 
are the calculated absolute values of D. [There is 
little numerical difference between the results given 
by Eqs. (5) and (7).] 

DeBoer et al.6 did not calculate Ows
(u) for gaseous 

He3, but it may be determined from the tabulated 
scattering phase shifts.7 The results are shown in 
Table I. It can be seen that they agree with the experi­
mental values within the maximum experimental error 
of 6%. 

In the next section, these remarks will be amplified 
into a detailed derivation of Eqs. (1), (2), (6), and (7) 
for gaseous He3, and the way in which the calculation 
may be carried out for hydrogen will be indicated. The 
Bloch-Torrey equation8 for the decay of magnetization 
by spin diffusion will be derived from a Boltzmann 
equation. The discussion avoids several of the assump­
tions made by Hone9 in his calculation of the spin-
diffusion coefficient in a Fermi liquid. 

II. CALCULATION OF THE SPIN-DIFFUSION 

1. Gaseous He3 

In a spin-echo experiment, the system is given an 
initial magnetization Mo by means of a magnetic field 
H and then a pulsed rf field is used to turn Mo so that 
it makes an angle a with H. For times which are short 
compared to the spin relaxation time, the subsequent 
motion of the magnetization M is given by the Bloch-
Torrey equation8 

dM/dt= {n/M) (MXH)+v -Dv (M-Mo), (8) 

where /z and / are, respectively, the magnetic moment 
and spin of the nucleus. Experimentally,1-3 the decay 
of M according to Eq. (8) is observed by applying 
further rf pulses to produce echoes, but the problem 

7 J. deBoer, J. Van Kranendonk, and D. Compaan, Physica 
16, 545 (1950). 

8 H . C. Torrey, Phys. Rev. 104, 563 (1956). 
• D. Hone, Phys. Rev. 121, 669 (1961). 
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here is to derive the equation together with an expres­
sion for D. 

In the presence of the magnetic fields, the particles 
are not in eigenstates of spin, and for He3, whose nuclear 
spin is J, it is necessary to use a Boltzmann equation 
for a (2X2) matrix p(v,r,tf) which represents the distri­
bution of spin of a particle with velocity v and position 
r at time t. This equation may be derived from the 
equations of motion for the one-particle Green func­
tion10 of the system in the long-wavelength limit and 
it is a plausible generalization 

dp dp 1 r d e dpi i 
— f v — — +-C«,pJ_=/(p) (9) 
dt dx 2nL dx d\J+ h 

of the usual Boltzmann equation. Here, [a,ZG+ and 
[#,&[]_ are, respectively, the anticommutator and the 
commutator of (2X2) matrices a and b, and e is the 
single-particle energy 

e=|mv2—/i(cr*H), (10) 

where o- is the spin vector. I(p) is the collision term. 
The first three terms on the left-hand side of Eq. (9) 
are the usual streaming terms in which matrix products 
have been symmetrized. The remaining term on the 
left-hand side represents the couple which H exerts on 
the spins. 

At the temperature of interest, it is possible4 to 
neglect the final-state statistical factors in the collision 
term and 

W)) = 2x I d\2 dx smx{aa(x,y)[_p(3)p(<i) 

-p( l )p(2) ]+a„ . (* , 7 ) [>(3)Crrp(4) -p(4) ) 

- p ( l ) ( T r p ( 2 ) - p ( 2 ) ) ] } , (11) 

where p(i) is p(yiyr,t); Vi and V2 are initial velocities, 
and the final velocities V3 and v4 must satisfy momen­
tum conservation and correspond to the scattering 
angle x. The quantities aa(x,y) and ana(x,y) are propor­
tional to the differential cross sections which lead to 
Oa

(1-1) and Ow , ( u ) defined in Sec. I. I t is easy to verify 
that, when p is a diagonal matrix, 7(p(l)) reduces to 
the usual collision integral for a two-component system. 

In the absence of a magnetic field, p is simply (/0/2), 
where I2 is the (2X2) unit matrix and /o is a Maxwell 
distribution function. When H is switched on, p becomes 

PE = / o [ / 2 + ( a « M 0 ) / H (12) 

to first order in H since the susceptibility follows 
Curie's law. Immediately after the first rf pulse, M is 
no longer parallel to H and p is then 

PO=/o[/2+(«F-M)//i»]. (13) 
10 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics 

(W. A. Benjamin, Inc., New York, 1962). 

The system will relax from this initial distribution 
function. 

Enskog's method4 of solving the Boltzmann equation 
is to construct a solution to first order in the collision 
rate. 

Suppose 
P = P O + P I . (14) 

Then to first order in pi, Eq. (9) becomes 

dpo 

dt 
-+v 

dpo 1 rde dpo~\ i 
— — + - [ 6 , P O ] - = / 1 ( P ) . (15) 

dr ImLdx d v J + n 

Ii(p) is calculated from Eq. (11) to first order in pi. 
/(po) vanishes and p0 may be replaced by (/0/2) to the 
lowest order in H. Then if 

Pi=/otf>, (16) 

I i (p( l ) ) is given by 

/ i (p( l ) ) = 2 i r / d v a / " s i n ^ / 0 ( l ) / o ( 2 ) 

X { a a ( x , 7 ) [ ^ ( 3 ) - ^ ( l ) + ^ ( 4 ) - ^ ( 2 ) ] 

+ans(x,y)t<p(3)- <p(l) + <p(2)- ^(4) 

+ T r ( ^ ( 4 ) - ^ ( 2 ) ) 7 2 ] } . (17) 

Now, using Eq. (13), Eq. (15) becomes 

- [ 
= / i (p ) . (18) 

3r dM 
- or 
tL dt 

dM d M " 1 

•+v--<r. (M-Mo)--(MXH) J dx hi 

dM/dt has to be found from the equation of change 
which is obtained by multiplying Eq. (9) by JUO-, taking 
the trace of both sides, and integrating over v. The 
collision term gives no contribution and the result is 

dM r p, 
1-MTrcrdiv / vpdx (MXH) = 0. 

dt J M 
(19) 

For use in Eq. (18), dM/dt has to be evaluated in the 
lowest approximation p=po, and then it is simply 
G z A / ) ( M x H ) . Thus Eq. (18) becomes 

( - > 
\un/ 

' / o \ * 
W . - < r . ( M - M o ) = Ji(p). 

\p,n/ dx 

The solution of this equation has the form 

<p=g(v)v—o-.(M-Mo), 
dx 

(20) 

(21) 
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where, from Eqs. (17) and (20) 

/—)v=2ir dp2j dxsmxfo(l)fo(2) 

X{aafe7)[V3gW-V1g(^) + V4gW-V2gW] 

+ans(x)y)lxzg(vd)-Yig(v1)~ v4g(^) + v 2 gW]}. (22) 

This equation is independent of the direction of M 
although, in general, this would not be so. The diffusion 
is limited by scattering of particles from neighboring 
regions of space in which the spins, on average, point 
in different directions. The forces are spin-independent 
but the scattering is not, since the relative wave 
functions must be antisymmetrized. In deriving Eq. 
(22) only the lowest order in M has been retained. 
In this approximation, particles from a region in space 
in which the spins are, on average, parallel to M, scatter 
from particles in a region of space in which the average 
spin in zero, so that the result is independent of the 
direction of M. 

Equation (22) may be solved by expanding g(v) in a 
series of Sonine polynomials.4 In practice6 it is sufficient 
to use the first term of the series and to set g(v) equal 
to a constant go. Then, by conservation of momentum, 
the term involving xa vanishes, and 

go=-t[M^U s
( 1 '1 )]-1 , (23) 

so that 

r («r-M) 3 1 d -i 
P = / J / . + - v . -cr . (M-Mo) .(24) 

L fin Sfxfi2Qns^ dt J 

If this expression is substituted into the equation of 
change [Eq. (19)] then the Bloch-Torrey equation 
[Eq. (8)] is obtained with D given by 

D=\[kf/rnn£lnP*>"\. (25) 

In the higher approximations to g(v), aa will appear 
and, in principle, it could produce a non-negligible effect 
(a similar effect is essential for superconductivity in 

metals.11) In practice5,6 the corrections are not large for 
hydrogen or for gaseous He3. For liquid helium three in 
the Fermi liquid region, they have not been estimated.9 

2. Spin Diffusion in Hydrogen Gas 

Orthohydrogen molecules have nuclear spin 7=1 , 
and rotational angular momentum / = 1. The discussion 
of He3 showed that the spin diffusion is isotropic so 
that D may be calculated by considering only the 
diagonal elements of Eq. (9) or, more simply, by 
discussing the initial diffusion of M when H is switched 
off suddenly and no pulsed rf fields are applied. 

Since the magnetic effects and the two-particle forces 
are taken to be independent of / , it is necessary to 
consider four simultaneous scalar Boltzmann equations, 
one for each value of mi and one for the parahydrogen. 
Once again, in the first approximation, collisions between 
particles with the same values of both I and / do not 
contribute. All other collisions involve nonsymmetrized 
cross sections and since the ortho-ortho and ortho-para 
potentials are assumed to be indentical, only one cross 
section 0»«(1»1} enters. 

If no and np are, respectively, the number densities 
of the ortho and para forms of hydrogen the result is 

3 kT 1 
D= , (26) 

8f»(»0+ffp)ftn.(1'1) 

in agreement with Eqs. (1) and (7). 
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